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• Define Hyper-relational and Numeric Knowledge Graphs (HN-KGs)
• Create 4 real-world HN-KG datasets

• Propose HyNT, Hyper-relational knowledge graph embedding with 
Numeric literals using Transformers
• Define a context transformer and a prediction transformer
• Reduce the cost by learning compact 

representations of triplets and qualifiers

• HyNT significantly outperforms
12 different state-of-the-art methods 
for link prediction, numeric value 
prediction, and relation prediction

Main Contributions

• Hyper-relational Knowledge Graphs
• Attach a set of qualifiers to a triplet to enrich information
• Existing methods assume that all entities are discrete objects

• Hyper-relational and Numeric Knowledge Graphs
• Contain both hyper-relational facts and numeric values

• An example of a hyper-relational fact
• ((Avatar, win, Saturn_Award), {(winner, James_Cameron), (time, 2010)})

• Predictions on HN-KGs
• Link Prediction: Predict a missing discrete entity
• Numeric Value Prediction: Predict a missing numeric value
• Relation Prediction: Predict a missing relation
• The missing component can be in either a primary triplet or a qualifier

Hyper-relational and Numeric Knowledge Graphs (HN-KGs)
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• Convert a triplet/qualifier to a representation vector 

Triplet/Qualifier Encoding

• Context Transformer
• Learn the representations of a primary triplet and the qualifiers

• Prediction Transformer
• Predict a missing component in a primary triplet or a qualifier

Context & Prediction Transformers

Primary Triplet Qualifier 1 Qualifier 2

𝐱tri

𝑾tri 𝐡; 𝐫;𝐦ent

𝐡 𝐫 𝐦ent 𝐪1

𝑾qual 𝐪1; 𝐯1

𝐪2 𝐯2

𝑣2𝐰𝑞2 + 𝐛𝑞2

𝑾qual 𝐪2; 𝐯2

𝐱qual2

𝐯1

ℎ 𝑟 𝑚ent 𝑞1 𝑣1 𝑞2 𝑣2
Avatar win ? winner Cameron time 2010

𝐱qual1

+ + +𝐩tri 𝐩qual 𝐩qual

𝐱tri 𝐱qual1 𝐱qual2

𝐱tri
(𝐿C) 𝐱qual2

(𝐿C)𝐱qual1
(𝐿C)

Prediction Transformer

+ + + + ෝ𝐩tෝ𝐩rෝ𝐩h

𝐱tri
(𝐿C)

ෝ𝐩tri

𝐳tri
(𝐿P) 𝐡 𝐿P 𝐫 𝐿P

𝐫𝐡 𝐦ent

𝐦ent
𝐿P

Context Transformer

(Avatar, win, ?) (winner, Cameron) (time, 2010) (Avatar, win, ?) Avatar win ?

• Baseline methods: TransEA, MT-KGNN, KBLN, LiteralE, NaLP, tNaLP, RAM, 
HINGE, NeuInfer, StarE, Hy-Transformer, GRAN

• Link Prediction Results (MRR, ↑)

• Numeric Value Prediction Results (RMSE, ↓)

• Relation Prediction Results (MRR, ↑)

• Visualization of Numeric Value Predictions
• Numeric value prediction problems

in a particular form

Experimental Results

HN-WK HN-YG HN-FB HN-FB-S

Primary
Best-baseline 0.2627 0.1951 0.2602 0.5077

HyNT 0.3037 0.2035 0.4544 0.5079

All
Best-baseline 0.2901 0.1951 - 0.5873

HyNT 0.3254 0.2035 0.5022 0.5796

⋯

• Introduce the concept and real-world datasets for Hyper-relational and 
Numeric Knowledge Graphs (HN-KGs)

• Propose HyNT to solve link prediction, numeric value prediction, and 
relation prediction on HN-KGs

• HyNT significantly outperforms 12 different state-of-the-art methods

• Plan to extend HyNT to inductive learning scenarios where new entities 
and relations appear at test time

Conclusion & Future Work

• Link Prediction Loss of HyNT

• Numeric Value Prediction Loss of HyNT

• Relation Prediction Loss of HyNT

• Loss of HyNT: ℒ ≔ ℒent + 𝜆1 ⋅ ℒrel + 𝜆2 ⋅ ℒnum

Training & Predictions of HyNT
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HN-WK HN-YG HN-FB HN-FB-S

Primary
Best-baseline 0.0761 0.0778 0.0637 0.0656

HyNT 0.0548 0.0706 0.0517 0.0532

All
Best-baseline 0.0820 0.1123 - 0.0627

HyNT 0.0405 0.0694 0.0558 0.0499

HN-WK HN-YG HN-FB HN-FB-S

Primary
Best-baseline 0.9285 0.8347 - 0.9845

HyNT 0.9474 0.8797 0.9809 0.9815

All
Best-baseline 0.9599 0.8548 - 0.9918

HyNT 0.9706 0.8944 0.9860 0.9902
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