

InGram: Inductive Knowledge Graph Embedding via Relation Graphs

Jaejun Lee, Chanyoung Chung, and Joyce Jiyoung Whang*

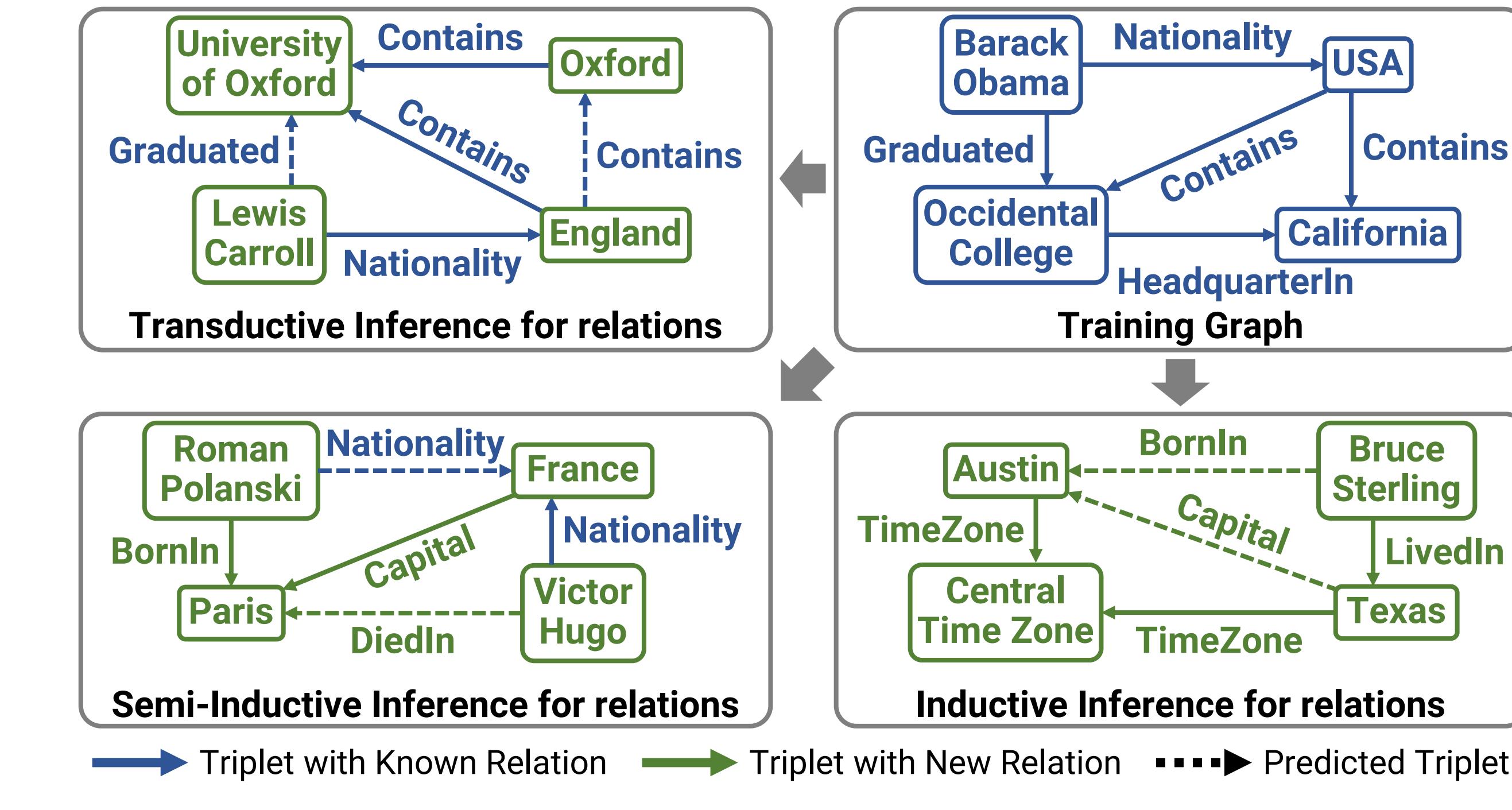
School of Computing, KAIST

The 40th International Conference on Machine Learning (ICML 2023)

Main Contributions

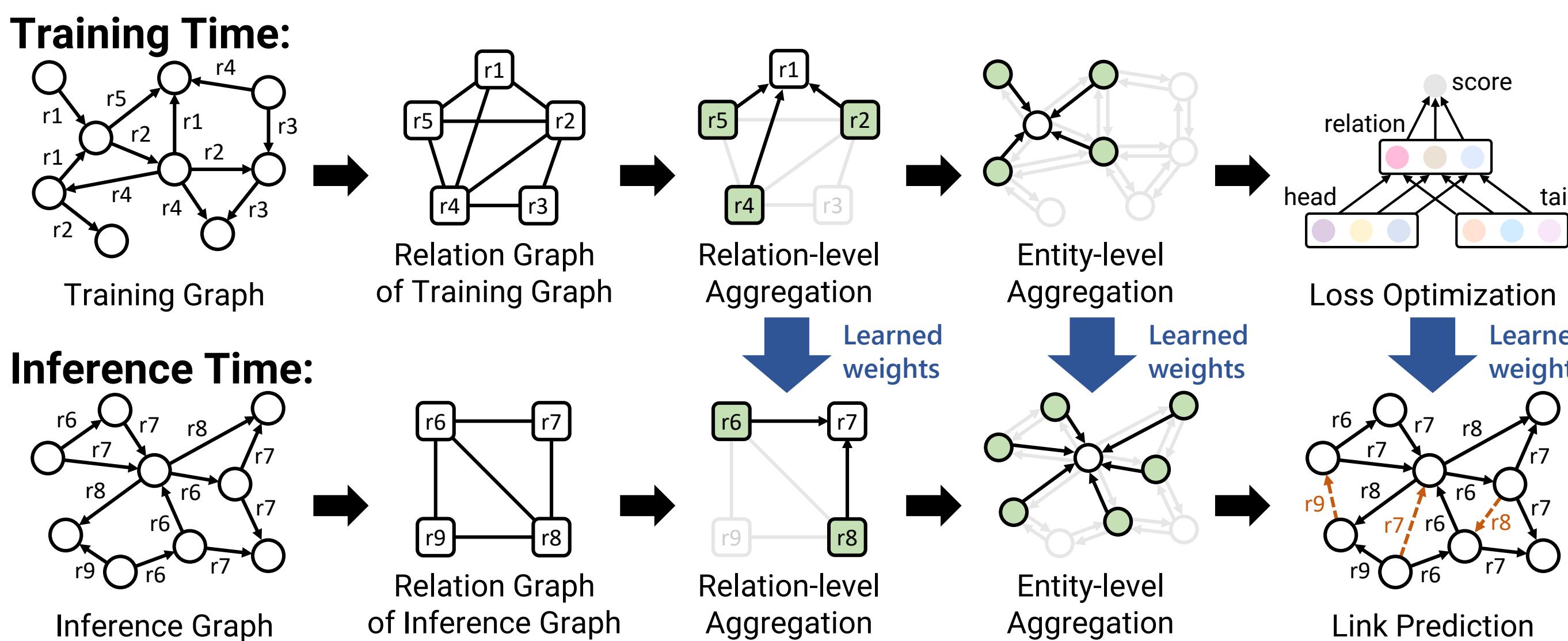
- Propose **InGram**, an **Inductive** knowledge **Graph** embedding method, that can generate embedding vectors for **new relations and entities**
- Based on the **structural similarities between relations**, define the **relation graph** to designate neighboring relations for each relation
- Learn **how to aggregate** neighboring embeddings to generate relation and entity embeddings using an attention mechanism
- Introduce **dynamic split** and **re-initialization** that makes InGram more easily **generalizable** to a new graph
- Generate 13 real-world datasets; InGram significantly outperforms 14 different state-of-the-art methods in **inductive link prediction with varied ratios of new relations**

Inductive Learning Scenarios



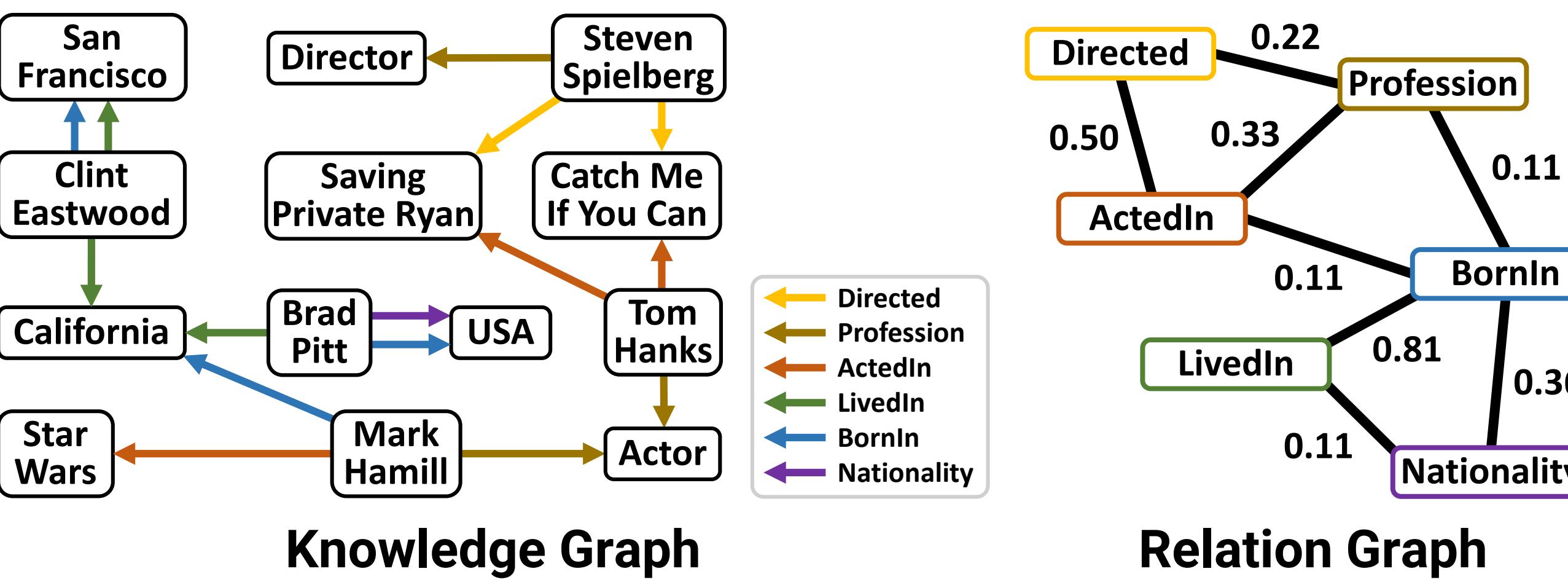
- Semi-Inductive Inference for relations**
 - An inference graph contains both **known** and **new relations**
- Inductive Inference for relations**
 - All relations** are **new** in an inference graph

Overview of InGram



Relation Graph

- Define the **neighboring relations** of each relation
 - Each node corresponds to a **relation**
 - Each edge weight indicates the **affinity between two relations**
- Adjacency matrix of the relation graph $A = E_h^T D_h^{-2} E_h + E_t^T D_t^{-2} E_t$
- Consider **how many entities are shared** between two relations and **how frequently they share the same entity**



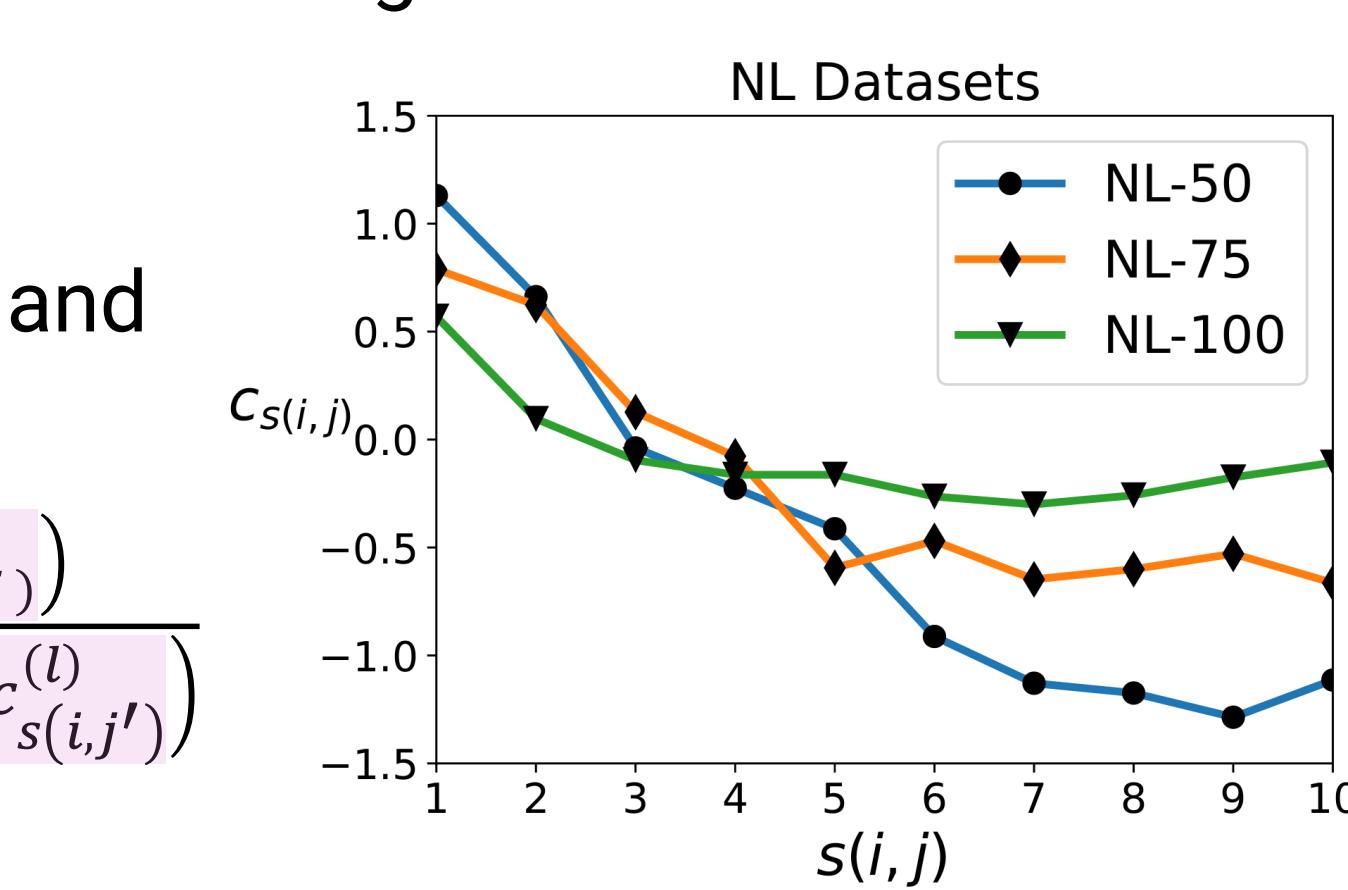
Relation-level Aggregation

- Aggregate neighboring relations' embedding vectors

$$\mathbf{z}_i^{(l+1)} = \sigma \left(\sum_{r_j \in \mathcal{N}_i} \alpha_{ij}^{(l)} \mathbf{W}^{(l)} \mathbf{z}_j^{(l)} \right)$$
- Consider the **relative importance** and the **affinity weight**

$$\alpha_{ij}^{(l)} = \frac{\exp(\psi^{(l)}([\mathbf{z}_i^{(l)} \parallel \mathbf{z}_j^{(l)}]) + c_{s(i,j)}^{(l)})}{\sum_{r_{j'} \in \mathcal{N}_i} \exp(\psi^{(l)}([\mathbf{z}_i^{(l)} \parallel \mathbf{z}_{j'}^{(l)}]) + c_{s(i,j')}^{(l)})}$$

$$\psi^{(l)}(\mathbf{x}) = \mathbf{y}^{(l)} \sigma(\mathbf{P}^{(l)} \mathbf{x})$$



Entity-level Aggregation

- Compute an entity embedding by considering its **own vector**, its **neighbors' embeddings**, and its **adjacent relations**

$$\mathbf{h}_i^{(l+1)} = \sigma \left(\beta_{ii}^{(l)} \widehat{\mathbf{W}}^{(l)} [\mathbf{h}_i^{(l)} \parallel \bar{\mathbf{z}}_i^{(l)}] + \sum_{v_j \in \hat{\mathcal{N}}_i} \sum_{r_{jk} \in \mathcal{R}_{ji}} \beta_{ijk}^{(l)} \widehat{\mathbf{W}}^{(l)} [\mathbf{h}_j^{(l)} \parallel \mathbf{z}_k^{(l)}] \right)$$

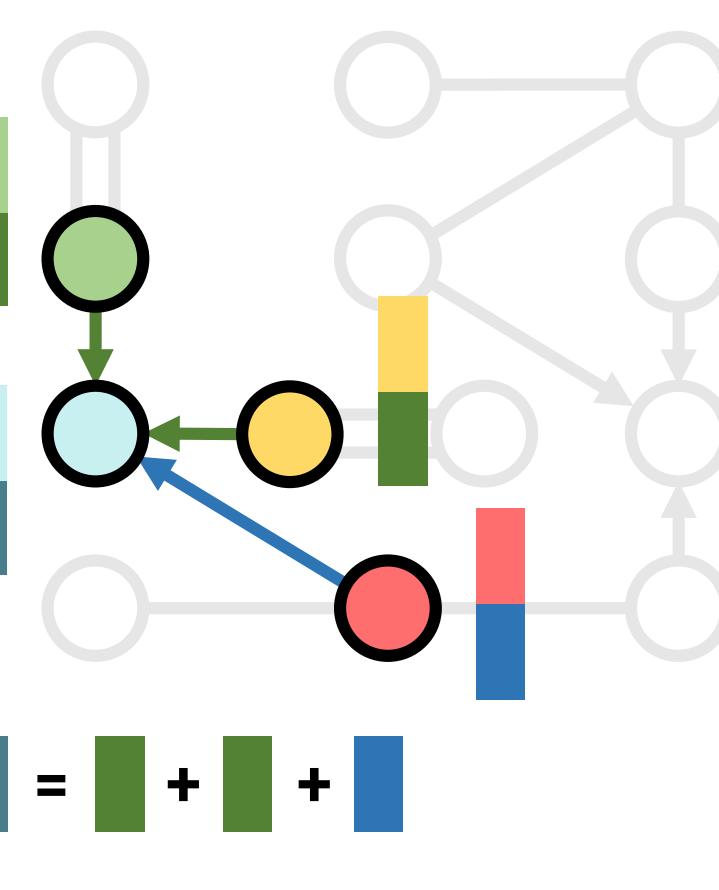
$$\bar{\mathbf{z}}_i^{(l)} = \sum_{v_j \in \hat{\mathcal{N}}_i} \sum_{r_{jk} \in \mathcal{R}_{ji}} \frac{\mathbf{z}_k^{(l)}}{\sum_{v_{j'} \in \hat{\mathcal{N}}_i} |\mathcal{R}_{j'i}|}$$

$$\beta_{ii}^{(l)} = \exp \left(\hat{\psi}^{(l)} \left([\mathbf{h}_i^{(l)} \parallel \mathbf{h}_i^{(l)} \parallel \bar{\mathbf{z}}_i^{(l)}] \right) \right) / \lambda$$

$$\beta_{ijk}^{(l)} = \exp \left(\hat{\psi}^{(l)} \left([\mathbf{h}_i^{(l)} \parallel \mathbf{h}_j^{(l)} \parallel \mathbf{z}_k^{(l)}] \right) \right) / \lambda$$

$$\hat{\psi}^{(l)}(\mathbf{x}) = \hat{\mathbf{y}}^{(l)} \sigma(\hat{\mathbf{P}}^{(l)} \mathbf{x})$$

$$\lambda = \exp \left(\hat{\psi}^{(l)} \left([\mathbf{h}_i^{(l)} \parallel \mathbf{h}_i^{(l)} \parallel \bar{\mathbf{z}}_i^{(l)}] \right) \right) + \sum_{v_{j'} \in \hat{\mathcal{N}}_i} \sum_{r_{jk'} \in \mathcal{R}_{j'i}} \exp \left(\hat{\psi}^{(l)} \left([\mathbf{h}_i^{(l)} \parallel \mathbf{h}_{j'}^{(l)} \parallel \mathbf{z}_{k'}^{(l)}] \right) \right)$$



Modeling Relation-Entity Interactions & Training Regime

- Final embedding vectors: $\mathbf{z}_k = \mathbf{M} \mathbf{z}_k^{(L)}$ and $\mathbf{h}_i = \hat{\mathbf{M}} \mathbf{h}_i^{(L)}$
- Scoring function: $f(v_i, r_k, v_j) = \mathbf{h}_i^T \text{diag}(\bar{\mathbf{W}} \mathbf{z}_k) \mathbf{h}_j$
- Use **margin-based ranking loss** to optimize the model parameters
- Dynamic split**: Randomly **re-split** the fact set and the training set
- Re-initialization**: Randomly **re-initialize** all feature vectors

Experimental Results

- Datasets: **13 real-world datasets** with various inductive settings
- Baselines**: GrAIL, CoMPILE, SNRI, INDIGO, RMPI, BLP, QBLP, RAILD, NeuralLP, DRUM, NBFNet, RED-GNN, CompGCN, NodePiece
- Link Prediction Results: Inductive Inference for Relations**

		MR (↓)	MRR (↑)	Hit@10 (↑)	Hit@1 (↑)
NL-100	Best-baseline	143.9	0.220	0.385	0.136
	InGram	92.6	0.309	0.506	0.212
WK-100	Best-baseline	2005.6	0.096	0.136	0.070
	InGram	1515.7	0.107	0.169	0.072
FB-100	Best-baseline	375.6	0.121	0.263	0.053
	InGram	171.5	0.223	0.371	0.146

- Link Prediction Results: Semi-Inductive Inference for Relations**

		MR (↓)	MRR (↑)	Hit@10 (↑)	Hit@1 (↑)
NL-75	Best-baseline	242.5	0.203	0.361	0.129
	InGram	59.1	0.261	0.464	0.167
WK-75	Best-baseline	523.9	0.172	0.290	0.110
	InGram	315.5	0.247	0.362	0.179
FB-75	Best-baseline	705.1	0.107	0.201	0.057
	InGram	217.4	0.189	0.325	0.119

- Link Prediction Results: Transductive Inference for Relations**

		MR (↓)	MRR (↑)	Hit@10 (↑)	Hit@1 (↑)
NL-0	Best-baseline	160.2	0.263	0.430	0.177
	InGram	152.4	0.269	0.431	0.189
NELL-995-v1	Best-baseline	7.1	0.677	0.885	0.550
	InGram	6.0	0.739	0.895	0.660

Conclusion & Future Work

- Define the **relation graph** to handle new relations at inference time
- InGram** learns to generate embeddings for **new relations and entities** solely based on the structure of a given knowledge graph
- InGram significantly outperforms 14 different baseline methods on **inductive**, **semi-inductive**, and **transductive inferences for relations**
- We will explore the **theoretical analysis** of InGram and make InGram **robust to possibly noisy information** in a given knowledge graph