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Transductive Knowledge Graph Completion
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Existing Inductive Knowledge Graph Completion
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Transductive Inference for Relations
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Semi-Inductive Inference for Relations
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Semi-Inductive Inference for Relations
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Semi-Inductive Inference for Relations
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Inductive Inference for Relations
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Inductive Inference for Relations
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Overview

Training Time:

J/ rl N\ P4 rl L\ score
r5 r2 r5 r2 relation
) 3 - ) - - head tail
Relation Graph Relation-level Entity-level
Training Graph of Training Graph Aggregation Aggregation Loss Optimization

Inference Time:

Learned Learned Learned
weights weights weights
ré r7 ré > r7 %
ro r8 r8
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Relation Graph
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Relation Graph with Binning
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Relation-level Aggregation 0
- Aggregate neighboring relations’ embedding vectors DD/O
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Relation-level Aggregation

» Aggregate neighboring relations’ embedding vectors
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Entity-level Aggregation

« Compute an entity embedding by considering its own vector, its
neighbors’ embeddings, and its adjacent relations
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Entity-level Aggregation

 Consider the entity itself and its adjacent relations
R+ _ <ﬁ<z>w(z) Rz

(L)
z
zl@ — E E k

: NEw

g = exp (3O ([ 1AL 1)) /2
I é“\

O (x) = §0a(POx)

2 =exp (BO(RPIRLIZED) + DT > exn (8O ([P0 127]))




Entity-level Aggregation

 Consider neighbors’ embedding vectors and their adjacent relations
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Entity-level Aggregation

» Consider the entity itself, its neighbors, and the relations
RV = a( FwO RO+ ) ) RO [h}”uz,&”])
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Modeling Relation-Entity Interactions

 Final embedding vectors computation score
L = (L
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 Scoring function head tail
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Dynamic split

* Randomly re-split the fact set and the training set
 Fact set: used for aggregating neighboring embeddings
 Training set: used for calculating the loss

Fact set Training set
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Re-initialization

- Randomly re-initialize all feature vectors of entities and relations
 Learns how to compute embedding vectors using random feature vectors
 Related to the expressive power of GNNs
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Experimental Results

» Datasets
« Based on NELL, Wikidata, and Freebase
 Create 13 real-world datasets with various inductive settings
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Experimental Results

» Datasets
« Based on NELL, Wikidata, and Freebase
 Create 13 real-world datasets with various inductive settings

« Comparison with 14 baselines
« Subgraph sampling: GrallL, COMPILE, SNRI, INDIGO, RMPI
 BERT-based: BLP, QBLP, RAILD
* Rule-based: NeuralLP, DRUM, NBFNet, RED-GNN
» Others: CompGCN, NodePiece



Inductive Inference for Relations
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Semi-Inductive Inference for Relations
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Transductive Inference for Relations
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Conclusion

» Explore various inductive settings
 Define the relation graph to handle new relations at inference time

* Propose InGram, which learns to generate embeddings solely based
on the structure of a given knowledge graph

 InGram significantly outperforms state-of-the-art methods for
inductive, semi-inductive, and transductive inferences for relations



Our datasets and codes are available at:
https://qgithub.com/bdi-lab/InGram

You can find us at:
{jjlee98, chanyoung.chung, jjwhang}@kaist.ac.kr
https://bdi-lab.kaist.ac.kr
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